
Performance Evaluation of the Quadrics Interconnection Network∗

Fabrizio Petrini?, Adolfy Hoisie?, Wu-chun Feng† and Richard Graham†

? CCS-3 Modeling, Algorithms, & Informatics
† CCS-1 Advanced Computing

Computer & Computational Sciences Division
Los Alamos National Laboratory

{fabrizio,hoisie,feng,rlgraham }@lanl.gov

Abstract

We present an initial performance evaluation of the Quadrics intercon-
nection network (QsNET). We describe the main hardware and software
features of QsNET of relevance to the system designer and to the end user.
Actual benchmarks are performed on an experimental Linux cluster. The
preliminary analysis indicates that the interconnect performs remarkably
well, e.g., user-level latency under2 µs and bandwidth over300 MB/s,
efficient support for collective communication patterns, and excellent con-
tention resolution under heavy traffic.

Keywords: Interconnection Networks, Performance E-
valuation, User-level Communication, Operating System
Bypass.

1 Introduction

System interconnection networks have become a critical
component of the computing technology, and they are likely
to have a great impact on the design, architecture, and use
of future high-performance computers. Indeed, not only the
sheer computational speed distinguishes high-performance
computers from desktop systems, but the efficient integration
of the computing nodes into tightly coupled multiprocessor
systems. Network adapters, switches, and device driver soft-
ware are increasingly becoming performance-critical com-
ponents in modern supercomputers.

A cursory, and admittedly non-comprehensive, look at the
state of the art in networking technology in high performance
computers indicates a number of notable players. The list in-
cludes Gigabit Ethernet [14], Giganet [17], SCI [6], Myrinet
[1], GSN (HIPPI 6400)[16]1, just to name a few.

These network solutions are different in terms of pro-
grammability, scalability, topology and performance. At the
low end of the performance spectrum we have Gigabit Ether-
net which provides a cost-effective solution for system area

∗The work was supported by the U.S. Department of Energy through
Los Alamos National Laboratory contract W-7405-ENG-36

1See also http://public.lanl.gov/radiant/hippi.html

networks. Giganet, Myrinet and SCI add programmability
and performance by using communication processors in the
network interface and implementing several types of user-
level, operating-system bypass communication protocols.

Infiniband [2] is an evolving standard that provides an in-
tegrated approach to high-performance communication by
dealing with many aspects of the network architecture,
including the elimination of bottlenecks in the I/O bus,
programming interface, communication protocols, fault-
tolerance, etc.

Some of these salient aspects of Infiniband already ex-
ist in the QsNET. In fact, the overall design of the QsNET
provides many innovative aspects. These include a novel ap-
proach to integrate the local virtual memory into a distribut-
ed virtual shared memory, the presence of a programmable
processor in the network interface that allows the implemen-
tation of intelligent communication protocols, an integrated
approach to network fault-detection and fault-tolerance.

QsNET is the interconnect adopted by Compaq for its
high performance servers. This interconnection strategy is
of great importance to the Los Alamos National Laboratory
because the 30 TeraOps ASCI2 architecture will be centered
around it.

This paper presents a performance analysis of the Qs-
NET. Section 2 gives a comprehensive presentation of the t-
wo hardware building blocks, the Elan and the Elite. Section
3 discusses the hierarchy of communication libraries. In Sec-
tion 4 we give a description of our benchmarking methodolo-
gy and experimental apparatus, while Section 5 presents the
experimental results and performance analysis. Some con-
cluding remarks are given in section 6.

2 The QsNET

The QsNET is based on two building blocks, a pro-
grammable network interface called Elan [12] and a low-
latency high-bandwidth communication switch called Elite

2http://www5.compaq.com/alphaserver/news/supercomputer0822.html

1

[13]. Elites can be interconnected in a fat-tree topology [7].
The network has several layers of communication libraries
which provide trade-offs between performance and ease of
use. Other important features are hardware support for col-
lective communication patterns and fault-tolerance.

2.1 Elan

The Elan3 network interface links the high-performance,
multi-stage Quadrics network to a processing node contain-
ing one or more CPUs. In addition to generating and ac-
cepting packets to and from the network, the Elan also pro-
vides substantial local processing power to implement high-
level message-passing protocols such as MPI. The internal
functional structure of the Elan, shown in Figure 1, centers
around two primary processing engines: the microcode pro-
cessor and the thread processor.

The 32-bit microcode processor supports four separate
threads of execution, where each thread can independent-
ly issue pipelined memory requests to the memory system.
Up to eight requests can be outstanding at any given time.
The scheduling for the microcode processor is extraordinari-
ly lightweight, enabling a thread to wake up, schedule a new
memory access on the result of a previous memory access,
and then go back to sleep in as few as two system-clock cy-
cles.

The four microcode threads are described below: (1)in-
putter thread:Handles input transactions from the network.
(2) DMA thread: Generates DMA packets to be written to
the network, prioritizes outstanding DMAs, and time-slices
large DMAs so that small DMAs are not adversely blocked.
(3) processor-scheduling thread:Prioritizes and controls the
scheduling and descheduling of the thread processor. (4)
command-processor thread:Handles operations requested
by the host (i.e., “command”) processor at user level.

The thread processor is a 32-bit RISC processor used to
aid the implementation of higher-level messaging libraries
without explicit intervention from the main CPU. In order
to better support the implementation of high-level message-
passing libraries without explicit intervention by the main
CPU, the thread processor’s instruction set was augmented
with extra instructions that construct network packets, ma-
nipulate events, efficiently schedule threads, and block save
and restore a thread’s state when scheduling.

The MMU translates 32-bit virtual addresses into ei-
ther 28-bit local SDRAM physical addresses or 48-bit PCI
physical addresses. To translate these addresses, the MMU
contains a 16-entry, fully-associative, translation lookaside
buffer (TLB) and a small data-path and state machine used
to perform table walks to fill the TLB and save trap informa-
tion when the MMU faults.

The Elan contains routing tables that translate every vir-
tual processor number into a sequence of tags that determine

3This paper refers to the Elan3 version of the Elan. We will use Elan and
Elan3 interchangeably throughout the paper.

the network route. Several routing tables can be loaded in
order to have different routing strategies.

The Elan has 8KB of cache memory, organized as 4 sets
of 2KB and 64MB of SDRAM memory. The cache line size
is 32 bytes. The cache performs pipelined fills from the S-
DRAM and is able to issue a number of cache fills and write
backs for different units while still being able to service ac-
cesses for units that hit on the cache. The interface to the
SDRAM has 64 bits and there are 8 check bits added to pro-
vide Error Code Correction. The memory interface also con-
tains a 32 byte write buffer and a 32 byte read buffer.

The link logic transmits and receives data from the net-
work and outputs 9 bits and a clock signal on each half of
the clock cycle. Each link provides buffer space for two vir-
tual channels with a 128 entry, 16 bit FIFO RAM for flow
control.

2.2 Elite

The other building block of the QsNET is the Elite switch.
The Elite provides the following features: (1) 8 bidirectional
links supporting two virtual channels in each direction, (2)
an internal16× 8 full crossbar switch4, (3) a nominal trans-
mission bandwidth of 400 MB/s on each link direction and a
flow through latency of35 ns, (4) packet error detection and
recovery, with routing and data transactions CRC protected,
(5) two priority levels combined with an aging mechanism to
ensure a fair delivery of packets in the same priority level, (6)
hardware support for broadcasts, (7) and adaptive routing.

The Elite switches are interconnected in a quaternary fat-
tree topology, which belongs to the more general class of the
k-aryn-trees [9] [8]. A quaternary fat-tree of dimensionn is
composed of4n processing nodes andn ∗ 4n−1 switches in-
terconnected as a delta network, and can be recursively build
by connecting 4 quaternary fat trees of dimensionn− 1.

Quaternary fat trees of dimension 1, 2 and 3 are shown in
Figure 2.

Elite networks are source routed. The route information
is attached to the packet header before injecting the packet
into the network and is composed by a sequence of Elite link
tags. As the the packet moves inside the network, each Elite
removes the first route tag from the header, and forwards the
packet to the next Elite in the route or to the final destination.
The routing tag can identify either a single output link or a
group of links.

The transmission of each packet is pipelined into the net-
work using wormhole flow control. At link level, each packet
is partitioned in smaller units called flits (flow control digits)
[3] of 16 bits. Every packet is closed by and End Of Packet
(EOP) token, but this is normally only sent after receipt of
a packet acknowledge token. This implies that every pack-
et transmission creates a virtual circuit between source and
destination.

4The crossbar has two input ports for each input link, to accommodate
the two virtual channels.

SDRAM
I/F Processor

 codeµ

DMA
Buffers

Inputter

FIFO
0

FIFO
1

Link
Mux

MMU &
TLB

Table
Walk

Engine

Clock &
Statistics
Registers

4 Way
Set Associative Cache

PCI Interface

Thread
Processor

100 MHz

Data Bus

66MHz

64

64

72

64

28

10 10200MHz

32

Figure 1. Elan Functional Units

a)

b)

c)

Figure 2. 4-ary n-trees of dimension 1, 2 and 3.

Packets can be sent to multiple destinations using the
broadcast capability of the network. For a broadcast pack-
et to be successfully delivered a positive acknowledgemen-
t must be received from all the recipients of the broadcast
group. All Elans connected to the network are capable of re-
ceiving the broadcast packet but, if desired, the broadcast set
can be limited to a subset of physically contiguous Elans.

3 Programming libraries

The Elan network interface can be programmed using
several programming libraries [11], as outlined in Figure 3.
These libraries trade speed with machine independence and
programmability. Starting from the bottom, Elan3lib is the
lowest programming level available in user space which al-
lows the access to the low level features of the Elan3. At this
level, processes in a parallel job can communicate with each
other through an abstraction of distributed virtual shared
memory. Each process in a parallel job is allocated a vir-
tual process id (VPID) and can map a portion of its address
space into the Elan. These address spaces, taken in combina-
tion, constitute a distributed virtual shared memory. Remote
memory (i.e., memory on another processing node) can be
addressed by a combination of a VPID and a virtual address.
Since the Elan has its own MMU, a process can select which
part of its address space should be visible across the network,
determine specific access rights (e.g. write- or read-only)
and select the set of potential communication partners.

Elanlib is a higher level layer that frees the programmer
from the revision-dependent details of the Elan, and extends
Elan3lib with point-to-point, tagged message passing prim-
itives (called Tagged Message Ports or Tports). Standard
communication libraries as such MPI-2 [4] or Cray Shmem
are implemented on top of Elanlib.

3.1 Elan3lib

The Elan3lib library supports a programming environ-
ment where groups of cooperating processes can transfer da-
ta directly, while protecting process groups from each other
in hardware. The communication takes place at user level,
with no copy, bypassing the operating system. More infor-
mation on Elan3lib is provided in Appendix A

3.2 Elanlib and Tports

Elanlib is a machine independent library that integrates
the main features of Elan3lib with the Tports. Tports pro-
vide basic mechanisms for point-to-point message passing.
Senders can label each message with a tag, the sender iden-
tity and the size of the message. This is known as theenve-
lope. Receivers can receive their messages selectively, filter-
ing them according to the identity of the sender and/or a tag
on the envelope. The Tport layer handles communication via

shared memory for processes on the same node. It is worth
noting that the Tports programming interface is very similar
to MPI [15].

4 Experimental Framework

We tested the main features of the QsNET on an experi-
mental cluster with 16 dual-processor SMPs equipped with
733MHz Pentium III. Each SMP uses a motherboard based
on the Serverworks HE chipset with 1GB of SDRAM. The
motherboard provides two 64 bits/66Mhz PCI slots and one
of them is used by the Elan3 PCI card QM-400. The in-
terconnection network is a quaternary fat-tree of dimension
two, as the one shown in Figure 2 b), with 16 external ports,
the QM-S16, composed of 8 8-port Elite switches integrat-
ed in the same board. The operating system used during the
evaluation is Linux 2.4.0-test7.

The preliminary results shown in this paper try to expose
basic performance of the interconnection network. For this
reason, most of the benchmarks are written at Elan3lib lev-
el. We will also shortly analyze the overhead introduced by
Elanlib and an implementation of MPI-2 [5] which is based
on a port of MPI-CH on Elanlib. A list of performed experi-
ments follows.

4.1 Unidirectional Ping

We analyze the latency and the bandwidth of the network
by sending messages of increasing size from a source to a
destination SMP. In order to identify different bottleneck-
s, the communication buffers are placed either in main or
in Elan memory. The alternatives include main memory to
main memory, Elan memory to Elan memory, Elan memory
to main memory and main memory to Elan memory. These
buffers are placed in the desired type of memory using the
allocation mechanisms provided by Elan3lib, as described in
Appendix A.

For the unidirectional ping we report graphs showing la-
tency and bandwidth. The latency is measured as the elapsed
time between the posting of the remote DMA request and
the notification of the successful completion at the destina-
tion (steps 2 through 5 and 11 through 13 in Figure 7). The
unidirectional ping tests for the Tports and MPI are imple-
mented using matching pairs of blocking sends and receives.

4.2 Bidirectional Ping

The unidirectional ping experiments can be considered as
the “peak performance” of the network. By sending pack-
ets in both directions along the same network path we can
expose several types of bottlenecks.

For example, the Elan microcode interleaves four activi-
ties, DMA engine, inputter, command processor and thread
processor. This test can evaluate how the DMA engine and

elan kernel commssystem calls
�����������
	���
����

� 	�����	���
����

User Applications

tport

mpishmem

elan3lib

elanlib

Figure 3. Elan3 programming library hierarchy

the inputter can work with bidirectional traffic. Also the link-
level flow control requires the transmission of control infor-
mation, which can lead to a degradation of the unidirectional
performance in the presence of bidirectional traffic.

4.3 Hotspot

A further test of the network and the network interface
is the hotspot. Under hotspot traffic, a set of communica-
tion partners try to read from or write into the same memo-
ry block. This localized communication pattern can lead to
a severe form of congestion known astree saturation[10],
which can seriously degrade the performance of the overall
network. In our experiments we will consider bothreadand
write hotspots.

5 Experimental Results

5.1 Unidirectional Ping

Figure 4 a) compares the performance of the unidirection-
al ping. The asymptotic bandwidth for all communication
libraries and buffer mappings lies in a narrow range, from
307 MB/s for MPI to 335 MB/s. The results show that there
is a slight performance asymmetry between read and write
performance on the PCI bus. In fact, with Elan3lib the read
bandwidth is321 MB/s while the write bandwidth is317 M-
B/s. The peak bandwidth of 335 MB/s is reached when both
source and destination buffers are placed in the Elan memo-
ry. The maximum amount of data payload that can be sent
by the current Elan implementation is 320 bytes, partitioned
in five low-level write-block transactions of 64 bytes. For
this message format, the overhead is 58 bytes, for the mes-
sage header, CRCs, routing info, etc. This implies that the
peak bandwidth delivered by the network is approximately
396 MB/s, or 99% of the nominal bandwidth of 400 MB/s.
These results also show that the PCI chipset is very efficient
and is not a bottleneck for this type of communication. Oth-
er PCI chipsets, as the Intel 8405, are significantly slower,
resulting in unidirectional bandwidths of only 200 MB/s.

5See http://support.intel.com/support/chipsets/index.htm

The graphs in Figure 4 a) can be logically organized in-
to three groups: those relative to Elan3lib with the source
buffer in Elan memory, Elan3lib with the source buffer in
main memory and Tports and MPI. In the first group there is
a low latency with small and medium-sized messages. This
basic latency is increased in the second group by the extra
delay to start the remote DMA over the PCI bus. Finally,
both Tports and MPI use the thread processor to perform tag
matching and this furtherly increases the overhead.

Figure 4 b) shows the latency in the range[0 . . . 4KB].
With Elan3lib the basic latency for 0-byte messages is only
1.9 µs and is almost constant at2.4 µs for messages up to
64 bytes, because these messages can be packed as a single
write-block transaction. We note an increase in the latency
at the Tports and MPI level, compared to the latency at the
Elan3lib level, from approximately2 µs to4.4 and5 µs, re-
spectively. From the Elan3lib level, in which latency is most-
ly hardware, system software is needed to run as a thread in
the Elan microprocessor in order to match the message tags:
this introduces the extra overhead responsible for the high-
er latency value. The noise at256 bytes, shown in Figure 4
b), is due the message transmission policy. In fact, messages
smaller than288 bytes are sent inline together with the mes-
sage envelope, so that they are available immediately when
a receiver posts a request for them. Larger messages are al-
ways sent synchronously, only after the receiver has posted
a matching request.

5.2 Bidirectional Ping

In this benchmark, whose results are shown in Figure 4 c),
we continue to draw the curves corresponding to the experi-
ments described in the previous case. We see that the claimed
bidirectionality of the network is not fully achievable. The
maximum undirectional value, obtained as1/2 of the mea-
sured bidirectional traffic, is about 280 MB/s, whereas in the
previous case it was 335 MB/s. This gap in bandwidth iden-
tifies bottlenecks in the network and in the network interface,
as opposed to the PCI bus. The causes of this performance
degradation are the interleaving of the DMA engine with the
inputter, the sharing of the internal data bus of the Elan and
also interferences at link level in the Elite network. Counter-

intuitively, this value is achieved when the source buffer is in
main memory and the destination buffer in Elan memory and
not when both buffers are in Elan memory. In this case, the
Elan memory is the bottleneck. The bidirectional bandwidth
for the main memory to main memory traffic is 160 MB/s for
all libraries. Figure 4 d) shows how the bidirectional traffic
affects latency with Elan3lib, Tports and MPI.

5.3 Hotspot

In this experiment we attempt to read from and write in-
to the same memory location from an increasing number of
processors (one per SMP). The bandwidth plots are depicted
in Figure 5. The upper curves are the aggregate bandwidth of
all processes. The curves are remarkably flat, reaching314
MB/s and307, respectively for read and write hotspots. The
lower curves show the per-process bandwidth. The scalabil-
ity of this type of memory operation is very good, up to the
available number of processors in our cluster. Hotspot oper-
ations, both on read and on write, are common in scientific
computing, hence the scalability of hotspot resolution is very
important.

6 Conclusion and Future Work

We presented the results of several performance tests on
the QsNET targeting essential performance characteristics.
At the lowest level of the communication hierarchy, the u-
nidirectional latency is as low as2 µs and the bandwidth
as high as307 MB/s. These performance numbers are in-
fluenced by the mapping of the buffers in various levels of
the memory hierarchy. The network bandwidth, measured
by placing the communication buffers in the Elan memory
is about 335 MB/s. Bidirectional measurements indicate a
degradation in performance which is analyzed and explained
in the paper. At higher levels in the communication hierar-
chy, Tports still exhibit excellent performance figures com-
parable to the ones at Elan3lib level. In summary, our anal-
ysis shows that in all the components of the performance
space we analyzed, the network delivers adequate perfor-
mance levels to the end user.

Future work includes scalability analysis for larger con-
figurations, performance of a larger subset of collective com-
munication patterns and performance analysis of ASCI ap-
plications.

References

[1] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E.
Kulawick, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su.
Myrinet: A Gigabit-per-Second Local Area Network.IEEE Micro,
15(1):29–36, January 1995.

[2] Daniel Cassiday. Infiniband architecture tutorial. Hot Chips 12 Tuto-
rial, August 2000.

[3] William J. Dally and Charles L. Seitz. Deadlock-Free Message Rout-
ing in Multiprocessor Interconnection Networks.IEEE Transactions
on Computers, C-36(5):547–553, May 1987.

[4] Al Geist, William Gropp, Steve Huss-Lederman, Andrew Lumsdaine,
Ewing Lusk, William Saphir, Tony Skjellum, and Marc Snir. MPI-
2: Extending the Message Passing Interface. InSecond International
Euro-Par Conference, Volume I, number 1123 in LNCS, pages 128–
135, Lyon, France, August 1996.

[5] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing
Lusk, Bill Nitzberg, William Saphir, and Marc Snir.MPI - The Com-
plete Reference, volume 2, The MPI Extensions. The MIT Press,
1998.

[6] Hermann Hellwagner. The SCI Standard and Applications of SCI.
In Hermann Hellwagner and Alexander Reinfeld, editors,SCI: Scal-
able Coherent Interface, volume 1291 ofLecture Notes in Computer
Science, pages 95–116. Springer-Verlag, 1999.

[7] Charles E. Leiserson. Fat-Trees: Universal Networks for Hardware
Efficient Supercomputing. IEEE Transactions on Computers, C-
34(10):892–901, October 1985.

[8] Fabrizio Petrini and Marco Vanneschi.k-ary n-trees: High Perfor-
mance Networks for Massively Parallel Architectures. InProceedings
of the 11th International Parallel Processing Symposium, IPPS’97,
pages 87–93, Geneva, Switzerland, April 1997.

[9] Fabrizio Petrini and Marco Vanneschi. Performance Analysis of
Wormhole Routedk-ary n-trees. International Journal on Founda-
tions of Computer Science, 9(2):157–177, June 1998.

[10] G. F. Pfister and V. A. Norton. Hot-spot Contention and Combining
in Multistage Interconnection Networks.IEEE Transactions on Com-
puters, C-34(10):943–948, October 1985.

[11] Quadrics Supercomputers World Ltd.Elan Programming Manual,
January 1999.

[12] Quadrics Supercomputers World Ltd.Elan Reference Manual, Jan-
uary 1999.

[13] Quadrics Supercomputers World Ltd.Elite Reference Manual,
November 1999.

[14] Rich Seifert.Gigabit Ethernet: Technology and Applications for High
Speed LANs. Addison-Wesley, May 1998.

[15] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and
Jack Dongarra.MPI - The Complete Reference, volume 1, The MPI
Core. The MIT Press, 1998.

[16] D. Tolmie, T. M. Boorman, A. DuBois, D. DuBois, W. Feng, and
I. Philp. From HiPPI-800 to HiPPI-6400: A Changing of the Guard
and Gateway to the Future. InProceedings of the 6th International
Conference on Parallel Interconnects (PI’99), October 1999.

[17] Werner Vogels, David Follett, Jenwi Hsieh, David Lifka, and David
Stern. Tree-Saturation Control in the AC3 Velocity Cluster. InHot
Interconnects 8, Stanford University, Palo Alto CA, August 2000.

A Elan3lib

The main features of Elan3lib are: (1) event notification,
(2) the memory mapping and allocation scheme and (3) re-
mote DMA transfers.

A.0.1 Event Notification

Events provide a general purpose mechanism for processes
to synchronize their actions. The mechanism can be used
by threads running on the Elan and processes running on the

02468

1
0

1
2

1
4

1
6

1
8

0
1

4
1

6
6

4
2

5
6

1
K

4
K

Latency �µs

M
sg

 S
iz

e
 (

b
yt

e
s)

U
n

id
ir
e

ct
io

n
a

l P
in

g
 L

a
te

n
cy

M
P

I
T

p
o

rt
,

M
a

in
 t

o
 M

a
in

E
la

n
3

,
M

a
in

 t
o

 M
a

in

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

1
4

1
6

6
4

2

5
6

1
K

4
K

1
6

K
6

4
K

2
5

6
K

1
M

4
M

Bandwidth MB/s �

M
sg

 S
iz

e
 (

b
yt

e
s)

U
n

id
ir
e

ct
io

n
a

l P
in

g
 B

a
n

d
w

id
th

M
P

I
T

p
o

rt
,

E
la

n
 t

o
 E

la
n

T
p

o
rt

,
M

a
in

 t
o

 E
la

n
T

p
o

rt
,

E
la

n
 t

o
 M

a
in

T
p

o
rt

,
M

a
in

 t
o

 M
a

in
E

la
n

3
,

E
la

n
 t

o
 E

la
n

E
la

n
3

,
M

a
in

 t
o

 E
la

n
E

la
n

3
,

E
la

n
 t

o
 M

a
in

E
la

n
3

,
M

a
in

 t
o

 M
a

in

b)
a)

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

1
4

1
6

6
4

2

5
6

1
K

4
K

1
6

K
6

4
K

2
5

6
K

1
M

4
M

Bandwidth MB/s �

M
sg

 S
iz

e
 (

b
yt

e
s)

B
id

ir
e

ct
io

n
a

l P
in

g
 B

a
n

d
w

id
th

M
P

I
T

p
o

rt
,

E
la

n
 t

o
 E

la
n

T
p

o
rt

,
M

a
in

 t
o

 E
la

n
T

p
o

rt
,

E
la

n
 t

o
 M

a
in

T
p

o
rt

,
M

a
in

 t
o

 M
a

in
E

la
n

3
,

E
la

n
 t

o
 E

la
n

E
la

n
3

,
M

a
in

 t
o

 E
la

n
E

la
n

3
,

E
la

n
 t

o
 M

a
in

E
la

n
3

,
M

a
in

 t
o

 M
a

in

05

1
0

1
5

2
0

2
5

3
0

0
1

4
1

6
6

4
2

5
6

1
K

4
K

Latency �µs

M
sg

 S
iz

e
 (

b
yt

e
s)

B
id

ir
e

ct
io

n
a

l P
in

g
 L

a
te

n
cy

M
P

I
T

p
o

rt
,

M
a

in
 t

o
 M

a
in

E
la

n
3

,
M

a
in

 t
o

 M
a

in

c)
d)

Figure 4. Unidirectional and Bidirectional Pings

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8

B
an

dw
id

th
 M

B
/s

�

Number of SMPs

Hotspot

Global Read Bandwidth
Global Write Bandwidth
Per-SMP Read Bandwidth
Per-SMP Write Bandwidth

Figure 5. Read and Write Hotspot

main processor. Events can be accessed both locally and re-
motely. In this way, processes can be synchronized across
the network, and can be used to indicate the end of a com-
munication operation, such as a completion of a remote D-
MA. Events are stored in Elan memory, in order to guarantee
the atomic execution of the synchronization primitives6. Pro-
cesses can wait for an event to be triggered by blocking, busy
waiting or polling. In addition, an event can be tagged as be-
ing a block copy event. The block copy mechanism works
as follows. A block of data in Elan memory is initialized to
hold a pre-defined value. An equivalent sized block is locat-
ed in main memory, and both are in the user’s virtual address
space. When the specified event is set, for example when a
DMA transfer has completed, a block copy takes place. That
is, the block in Elan memory is copied to the block in main
memory. The user process polls the block in main memory
to check its value, (for example, bringing a copy of the cor-
responding memory block into the L2 cache) without having
to poll for this information across the PCI bus. When the
value is the same as that initialized in the source block, the
process knows that the specified event has happened.

A.0.2 Memory Mapping and Allocation

The MMU in the Elan can translate between virtual address-
es written in the format of the main processor (for example, a
64-bit word, big Endian architecture as the AlphaServer) and
virtual addresses written in the Elan format (a 32-bit word,
little Endian architecture). For a processor with a 32 bit ar-
chitecture (for example an Intel Pentium), a one-to-one map-
ping is all that is required.

In Figure 6 the mapping for a 64-bit processor is shown.
The 64 bit addresses starting at 0x1FF0C808000 are mapped
to Elan’s 32 bit addresses starting at 0xC808000. This

6The current PCI bus implementations cannot guarantee atomic execu-
tion, so it is not possible to store events in main memory.

means that virtual addresses in the range 0x1FF0C808000 to
0x1FFFFFFFFFF can be accessed directly by the main pro-
cessor while the Elan can access the same memory by using
addresses in the range 0xC808000 to 0xFFFFFFFF. In our
example, the user may allocate main memory using malloc
and the process heap may grow outside the region directly
accessible by the Elan delimited by 0x1FFFFFFFFFF. In or-
der to avoid this problem, both main and Elan memory can
be allocated using a consistent memory allocation mechanis-
m. As shown in Figure 6 the MMU tables can be set up to
map a common region of virtual memory calledmemory al-
locator heap. The allocator maps physical pages, of either
main memory or Elan into this virtual address range on de-
mand. Thus, using allocation functions provided by the Elan
library, portions of virtual memory (1) can be allocated ei-
ther from main or Elan memory, and (2) the MMUs of both
main processor and Elan can be kept consistent.

For reasons of efficiency, some objects can be located on
the Elan, for example communication buffers or DMA de-
scriptors which the Elan can process independently of the
main processor.

A.0.3 Remote DMA

The Elan supports remote DMA (Direct Memory Access)
transfers across the network, without any copying or buffer-
ing or operating system intervention. The process that ini-
tiates the DMA fills out a DMA descriptor, which is typi-
cally allocated on the Elan memory for efficiency reasons.
The DMA descriptor contains the VPIDs of both source and
destination, the amount of data, the source and destination
addresses, two event locations (one for the source and the
other for the destination process) and other information used
to enhance fault tolerance.

The typical steps of remote DMA are outlined in Figure 7.

MAIN MEMORY
ELAN SDRAM

memoy allocator heap

system

stack

text

data

bss

heap

8000

C808000

system

memoy allocator heap

text

data

bss

stack

heap

Virtual Address Space

Main Processor

Elan Virtual Address Space

200MB

FFFFFFFF
1FFFFFFFFFF

1FF0C808000

10C808000

10C808000

200 MB

Figure 6. Virtual Address Translation

processorµ

DMA
Engine

Inputter

Table
Walk

Engine
MMU

Command
Processor

processorµ

Source

DMA
Engine

Inputter

Table
Walk

Engine
MMU

Command
Processor

Destination

DMA
Descriptor

Event

Event

Event

Event

ELAN SDRAM

ELAN SDRAM

1

2

3 4

5

6

9

10

11

12

13

8

7

Figure 7. Execution of a Remote DMA. The sending process (1) initializes the DMA descriptor in the
Elan memory and (2) communicates the address of the DMA descriptor to the command processor.
The command processor (3) checks the correctness of the DMA descriptor and (4) adds it to the DMA
queue. The DMA engine (5) performs the remote DMA transaction. Upon completion the remote
inputter (6) notifies the DMA engine which (7) sends an ack to the source Elan. Source (8-10) and
destination (11-13) events can be notified, if needed.

